Generalized Fourier series

Results: 42



#Item
1Mathematical analysis / Mathematics / Fourier analysis / Generalized functions / Differential equations / Operator theory / Functional analysis / Dirac delta function / Heat equation / Partial differential equation / Fourier series / Distribution

Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential Dmitry Pelinovsky1 , Guido Schneider2 , and Robert MacKay3 1 3

Add to Reading List

Source URL: www2.warwick.ac.uk

Language: English - Date: 1970-01-01 18:00:00
2Integral transforms / Joseph Fourier / Mathematical physics / Generalized functions / Fourier analysis / Fourier inversion theorem / Fourier / Fourier series

ABSTRACT: MIDLANDS LOGIC SEMINAR, BIRMINGHAM, NOVEMBER 8, 2013. TRISTRAM DE PIRO I will give a proof of the Fourier Inversion Theorem for functions f : R → R, belonging to the Schwartz class, (∗), using the methods o

Add to Reading List

Source URL: midlandslogic.org.uk

Language: English - Date: 2013-10-29 19:32:04
3Mathematical analysis / Fourier analysis / Joseph Fourier / Integral transforms / Mathematical physics / Generalized functions / Fourier transform / Error function / Ewald summation / Poisson summation formula / Series / Fourier series

Lecture Notes: Ewald Summation Homer Reid April 10,

Add to Reading List

Source URL: homerreid.dyndns.org

Language: English - Date: 2015-10-27 00:54:41
4Mathematical analysis / Fourier analysis / Generalized functions / Functional analysis / Mathematical physics / Joseph Fourier / Dirac delta function / Distribution / Topological space / Laplace transform / Fourier series / Normal distribution

c 2006 Society for Industrial and Applied Mathematics ! SIAM REVIEW Vol. 48, No. 4, pp. 745–768

Add to Reading List

Source URL: www.dam.brown.edu

Language: English - Date: 2007-06-06 15:27:46
5Joseph Fourier / Integral transforms / Digital signal processing / Generalized functions / Fourier series / Fourier transform / Fourier inversion theorem / Convolution / Diffraction / Mathematical analysis / Mathematics / Fourier analysis

c W.C Carter Lecture 18 MITFall 2007

Add to Reading List

Source URL: pruffle.mit.edu

Language: English - Date: 2009-06-08 11:32:37
6Joseph Fourier / Integral transforms / Digital signal processing / Generalized functions / Fourier series / Fourier transform / Fourier inversion theorem / Convolution / Diffraction / Mathematical analysis / Mathematics / Fourier analysis

c W.C Carter Lecture 18 MITFall 2012

Add to Reading List

Source URL: pruffle.mit.edu

Language: English - Date: 2012-11-09 14:47:56
7Joseph Fourier / Integral transforms / Digital signal processing / Generalized functions / Fourier series / Fourier transform / Fourier inversion theorem / Convolution / Diffraction / Mathematical analysis / Mathematics / Fourier analysis

196 c W.C Carter MITFall 2007 Lecture 18

Add to Reading List

Source URL: pruffle.mit.edu

Language: English - Date: 2009-06-08 11:31:30
8Joseph Fourier / Unitary operators / Integral transforms / Fourier transform / Fourier series / Fourier inversion theorem / Poisson summation formula / Sturm–Liouville theory / Hermite polynomials / Mathematical analysis / Fourier analysis / Generalized functions

640 Acta CrystA48, S o m e R e m a r k s on Q u a s i - C r y s t a l Structure BY BARRY W. NINHAM* AND SVEN LIDIN

Add to Reading List

Source URL: empslocal.ex.ac.uk

Language: English - Date: 2003-07-11 15:11:28
9Mathematics / Fourier analysis / Joseph Fourier / Generalized functions / Nyquist–Shannon sampling theorem / Sinc function / Fourier transform / Fourier series / Dirac comb / Digital signal processing / Mathematical analysis / Signal processing

The Sampling Theorem and the Bandpass Theorem by D.S.G. Pollock University of Leicester Email: stephen

Add to Reading List

Source URL: www.le.ac.uk

Language: English - Date: 2014-12-03 06:26:07
10Mathematics / Jacobi polynomials / Generalized Fourier series / Hypergeometric function / Wilson polynomials / Classical orthogonal polynomials / Mathematical analysis / Special functions / Orthogonal polynomials

  O P - S F N E T - Volume 19, Number 3 – May 15, 2012 Editors: Diego Dominici Martin Muldoon

Add to Reading List

Source URL: staff.fnwi.uva.nl

Language: English - Date: 2012-05-16 04:22:26
UPDATE